Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Direct Injection of Natural Gas at up to 600 Bar in a Pilot-Ignited Heavy-Duty Engine

2015-04-14
2015-01-0865
Retaining the diesel combustion process but burning primarily natural gas offers diesel-like efficiencies from a natural-gas fuelled heavy-duty engine. This combustion event is limited by the injection pressure of the fuel, as this dictates the rate of mixing and hence of combustion. Typical late-cycle direct injection applications are limited to approximately 300 bar fuel pressure. The current work reports on tests for the first time at natural gas injection pressures up to 600 bar. The results show that significant efficiency and particulate matter reductions can be achieved at high loads, especially at higher speeds where the combustion is injection rate limited at conventional pressures. Increases in combustion noise and harshness are a drawback of higher pressures, but these can be mitigated by reducing the diameter of the nozzle gas holes to control the fuel injection rate.
Journal Article

Analysis of Vehicle Lateral Dynamics due to Variable Wind Gusts

2014-09-30
2014-01-2449
This study presents a practical theoretical method to judge the aerodynamic response of buses in the early design stage based on both aerodynamic and design parameters. A constant longitudinal velocity 2-DOF vehicle lateral dynamics model is used to investigate the lateral response of a bus under nine different wind gusts excitations. An appropriate 3-D CFD simulation model of the bus shape results is integrated with carefully chosen design parameters data of a real bus chassis and body to obtain vehicle lateral dynamic response to the prescribed excitations. Vehicle model validity is carried out then, the 2-DOF vehicle lateral dynamics model has been executed in MATLAB Simulink environment with the selected data. Simulation represents the vehicle in a straight ahead path then entered a gusting wind section of the track with a fixed steering wheel. Vehicle response includes lateral deviation (LD), lateral acceleration (LA), yaw angle (YA) and yaw rate (YR).
Journal Article

Extending the NOx Reduction Potential with Miller Valve Timing Using Pilot Fuel Injection on a Heavy-Duty Diesel Engine

2014-10-13
2014-01-2632
New emission legislations applicable in the near future to sea-going vessels, off-road and off-highway vehicles require drastic nitric oxides emission reduction. A promising approach to achieve part of this decrease is charge air temperature reduction using Miller timing. However, it has been shown in literature that the reduction potential is limited, achieving a minimum in NOx emissions at a certain end-of-compression temperature. Further temperature reduction has shown to increase NOx emissions again. Some studies have shown that this increase is correlated to an increased amount of premixed combustion. In this work, the effects of pilot injection on engine out NOx emissions for very early intake valve closure (i.e. extreme Miller), high boost pressures and cold end-of-compression in-cylinder conditions are investigated. The experiments are carried out on a 3.96L single cylinder heavy-duty common-rail Diesel engine operating at 1000 rpm and at constant global air-to-fuel ratio.
Journal Article

Diffusive Air Jet Combustion Chamber and Its Effect on DI Diesel Engine Combustion and Exhaust Emissions

2015-01-14
2015-26-0105
An innovative Diffusive Air Jet (DAJ) Combustion Chamber concept has been introduced in the present work. The DAJ Combustion Chamber design is based on the study of rate of heat release (ROHR) curve and its correlation with emission generation. The objective is to lower the trade-off between NOx and soot without sacrificing fuel economy of Direct Injection (DI) diesel engine. DAJ Combustion Chamber modifies ROHR curve to the desired one so that it lowers engine out emissions. To study its effect, a large bore, six cylinder engine with mechanical fuel injection system has been used. Three dimensional simulation software is used for the model calibration of basic reentrant cavity. Local emissions and ROHR curve have been studied using reentrant cavity shape. It has been modified to DAJ Combustion Chamber using Air Jet Chambers (AJCs). AJCs are positioned in the three dimensional model in such a way that they affect local in-cylinder emissions.
Technical Paper

Effects of Oxidation Upon Long-term Storage of Karanja Biodiesel on the Combustion and Emission Characteristics of a Heavy-Duty Truck Diesel Engine

2021-09-21
2021-01-1200
The presence of unsaturated methyl esters in biodiesel makes it susceptible to oxidation and fuel quality degradation upon long-term storage. In the present work, the effects of oxidation of Karanja biodiesel upon long-term storage on the combustion and emission characteristics of a heavy-duty truck diesel engine are studied. The Karanja biodiesel is stored for one year in a 200 litres steel barrel at room conditions to mimic commercial storage conditions. The results obtained show that compared to diesel, the start of injection of fresh and aged biodiesels are advanced by ~2-degree crank angle, and the ignition delay time is reduced. Aged biodiesel showed a slightly smaller ignition delay compares to fresh biodiesel. The fuel injection and combustion characteristics of fresh and aged biodiesels were similar at all the load conditions. Both fresh and aged biodiesels produced higher oxides of nitrogen (NOx) and lower smoke emissions compared to diesel.
Technical Paper

Effects of EGR, Variable Valve Timing, High Turbulence and Water Injection on Efficiency and Emissions of a HD Stoichiometric Natural Gas Engine

2021-09-05
2021-24-0048
The EU recently decided to reduce CO2 emissions of commercial vehicle fleets by 30% until 2030. One possible way to achieve this target is to convert commercial vehicle diesel engines into stoichiometric natural gas engines. Based on this, a commercial vehicle single cylinder diesel engine with variable valve actuation and high-pressure EGR is converted into natural gas operation to increase efficiency and thus reduce CO2. Additionally, a water injection system is integrated. All three technologies are investigated on their own and in combination. To reduce longer combustion durations caused by Miller valve timing and charge dilution, a piston bowl with extra high turbulence generation is designed. Additionally, a swirl variation is carried out. The results show, that high swirl motion and high turbulence can lead to a disadvantage in efficiency despite faster combustion durations due to higher wall heat losses.
Technical Paper

Inverse Reconstruction of the Spatial Distribution of Dynamic Tire-Road Contact Forces in Time Domain Using Impulse Response Matrix Deconvolution for Different Measurement Types

2021-08-31
2021-01-1061
In tire development, the dynamic tire-road contact forces are an important indicator to assess structure-borne interior cabin noise. This type of noise is the dominant source in the frequency range from 50-450 Hz, especially when rolling with constant angular velocity on a rough road. The spatial force distribution is difficult or sometimes even impossible to simulate or measure in practice. So, the use of an inverse technique is proposed. This technique uses response measurements in combination with a digital twin simulation model to obtain the input forces in an inverse way. The responses and model properties are expressed in the time domain, since it is specifically aimed to trace back the impact locations from road surface texture indents on the tire. In order to do so, the transient responses of the travelling waves as a result of these impacts is used. The framework expresses responses as a convolution product of the unknown loads and impulse response measurements.
Technical Paper

Development of Dual Fuel (Diesel + CNG) Engine for Off-Road Application

2021-09-22
2021-26-0119
The evolution of engine technology has so far seen the most beneficial side of progress in the fields of transportation, agriculture, and mobility. With the advent of innovation, there is also an impact on our environment that needs to be balanced. This is where fuels like CNG, LPG, LNG, etc. outperform conventional fossil fuels in terms of pollution & operational cost. This paper enlightens on the use of innovative dual-fuel technology where diesel & CNG fuels are used for combustion simultaneously inside the combustion chamber. Dual fuel system adaptation for farm application ensures self-reliance of the farmer where he can generate Bio-CNG to use the renewable fuel for farming making him less dependent on conventional fossil fuel thus promoting a green economy. The dual-fuel system is adapted to the existing in-use diesel engine with minimum modifications. This makes it feasible to retrofit a CNG fuel system on an existing diesel engine to operate it on dual fuel mode.
Technical Paper

Experimental Analysis of Heavy Duty CNG Engine Based on Its Aspiration and Fuel System

2021-09-22
2021-26-0117
Engine calibration involves the interaction of electronic components with various engine systems like intake system, exhaust system, ignition system, etc. Emissions are the by-products of combustion of fuel and air inside the combustion chamber. After-treatment systems generally take up the responsibility to scrape out harmful emissions from the engines. However, a good engine calibration will focus on emission reduction at source i.e., during the combustion itself. Thus, the intake of air and fuel in proper amount at each engine operating point is crucial for optimized engine performance and minimal emissions. The Intake system is an integral part of any internal combustion engine and it plays an important role to improve its performance and emission. Generally, for a SI engine, maintaining the stoichiometric A/F ratio is a challenging endeavour from an operational standpoint.
Technical Paper

Development of Full Car Model for Ride Analysis of Light Duty Bus using MATLAB Simulink

2021-09-22
2021-26-0088
Ride is considered to be one of the crucial criterion for evaluating the performance of a vehicle. Automobile industry is striving for improvement in designs to provide superior passenger comfort in Commercial vehicles segment. In Industry, Quarter-car model has been used for years to study the vehicle’s ride dynamics. But due to lower DOF involved in quarter car, the output accuracy is somewhat compromised. This paper aims in development of a 7 DOF full-car Model to perform the ride- comfort analysis for Light Duty 4*2 Commercial Bus using MATLAB Simulink which can be used to tune the suspension design to meet the required ride-comfort criteria. Firstly, experimental data and Physical Parameters are collected by performing Practical Test on commercial Bus on different road profiles. Secondly, a Full Car Mathematical Model with 7 DOF has been developed for a bus using MATLAB Simulink R2018a.
Technical Paper

Bump Steer and Brake Steer Optimization in Steering Linkages Through TAGUCHI Method DOE Analysis

2021-09-22
2021-26-0079
Due to recent infrastructural development and emerging competitive automotive markets, there is seen a huge shift in customer’s demand and vehicle drivability pattern in commercial vehicle industry. Now apart from ensuring better vehicle durability and best in class tyre life and fuel mileage, a vehicle manufacturer also has to focus on other key attributes like driver’s safety and ride comfort. Thus, for ensuring enhanced drivability, key parameters for ensuring better vehicle handling includes optimization of bump steer and brake steer. Both bump steer and brake steer are vehicle’s undesirable phenomenon where a driver is forced to constantly make steering wheel correction in order to safely maneuver the vehicle in the desired path.
Technical Paper

Development of an all Speed Governed Diesel-CNG Dual Fuel Engine for Farm Applications

2021-09-22
2021-26-0101
This paper discusses the development of an all speed governed diesel-natural gas dual fuel engine for agricultural farm tractor. A 45 hp, 2.9 liters diesel-natural gas dual fuel engine with a novel closed loop secondary fuel injection system was developed. A frugal approach without any modification of the base mechanical diesel fuel injection system was followed. This approach helped to minimize the cost impact, while meeting performance and emissions at par with neat diesel operation. Additional cost on gas injection system is redeemed by cost savings on diesel fuel. The dual fuel technology developed by Mahindra & Mahindra Ltd., substitutes on an average approximately 40% of diesel with compressed natural gas, meeting the TREM III A emission norms for dual fuel while meeting all application requirements. The governing performance of the tractor was found to be superior than base diesel tractor.
Technical Paper

Investigations of Emission Reduction Potential of Diesel-Methanol Blends in a Heavy-Duty Genset Engine

2021-09-22
2021-26-0104
One of the most promising fuel alternatives for Diesel is Methanol. The fuel is regarded advantageous owing to the easy availability of raw materials for its production, its low cost and high Oxygen content that has potential to reduce emissions of smoke, CO and PM. Methanol as a fuel blend with Diesel is non-viable as they are not readily miscible with each other. This paper expounds the engine performance and emission evaluation of blending Methanol with Diesel by using two methods that aid in overcoming phase separation. The experiments were performed in two stages. In the first stage, investigation of phase stabilization of Methanol in Diesel with suitable additive concentration was performed. This was performed to determine the optimum additive and its concentration for a Methanol share of up to 25% in Diesel-Methanol blends for a stabilization period of 30 days.
Technical Paper

Virtual Simulation Method to Predict Farm Tractor Durability Load Cycles for Proving Ground Tests

2021-09-22
2021-26-0097
Agriculture machinery industries have always relied on conventional product development process such as laboratory tests, accelerated durability track tests and field tests. Now a days the competitive nature seen in industry concerns need to enhance product quality, time to market and development cost. Utilization of Computer Aided Engineering (CAE) methods not only provide solution but also could play key role in tractor development process. The objective is to assess the performance of virtual simulation model of mid segment farm tractor using Multibody System Model (MBS) for predicting the durability loads on virtual proving ground test tracks. Multibody simulation software MSC ADAMS is used to develop a virtual tractor model. Durability test tracks and simulation is carried out as per company testing standards. Data measurement is done using Wheel Force Transducer (WFT) to study front and rear spindle forces and moments to evaluate the virtual model performance.
Technical Paper

A Study on Significance of Forward Speed of Tractor and Peripheral Speed of Rotavator for Optimal Field Performance

2021-09-22
2021-26-0099
The trace of rotavator blade is trochoidal path which depends both on tractor forward speed and rotational speed of rotavator. Since this path plays an important role in pulverization, hence pulverization also depends on both factors. In present days system, Rotavator an active tillage implements drawn by tractor is operated by drivers experience and driver set up the speed by throttling the tractor to reach the rated 540 PTO rpm mark in instrumentation cluster. Thus, there is no indication system available to farmer/ Tractor driver to operate the tractor connected rotavator at optimal forward tractor speed and rotational speed of rotavator. Thus, leading to decrease in field quality and performance.
Technical Paper

A Model Based Approach to DPF Soot Estimation and Validation for BSVI Commercial Vehicles in Context to Indian Driving Cycles

2021-09-22
2021-26-0183
With India achieving the BSVI milestone, the diesel particulate filter (DPF) has become an imperative component of a modern diesel engine. A DPF system is a device designed to trap soot from exhaust gas of the diesel engine and demands periodic regeneration events to oxidize the accumulated soot particles. The regeneration event is triggered either based on the soot mass limit of the filter or the delta pressure across it. For a Heavy Duty Diesel Engine (HDDE), pressure difference across the DPF is not usually reliable as the size of the DPF is large enough compared to the DPF used ina passenger vehicle diesel engine. Also, the pressure difference across DPF is a function of exhaust mass flow and thus it makes it difficult to make an accurate call for active regeneration. This demands for a very accurate soot estimation model and it plays a vital role in a successful regeneration event.
Technical Paper

Development of Thermal Detection Device for Automotive Vehicles to Monitor Human Body Heat

2021-09-22
2021-26-0232
According to research studies, epidemics such as SARS, COVID-19 spread have caused huge negative impacts on population, health and the economy around the globe. The outbreak places a huge burden on international health systems that were already straining to address AIDS, tuberculosis, malaria, and a host of other conditions. Research has proven that incase infected person is not traced timely then the spread of infection in society will take the shape of large-scale community transmission. Most of the infections spread because they got unnoticed by the infected person. One part of the access checker scans is a person’s body temperature by measuring infrared radiation emitted by their skin. Fever screening by infrared thermal imaging has become more widespread following the SARS infection, and particularly during the pandemic H1N1 and COVID-19 outbreak. Skin temperature is measured without contact by monitoring the emitted infrared radiation.
Technical Paper

A Novel Thermal Management Simulation Model Analysis for The Fuel Cell Electric Truck Systems

2021-09-22
2021-26-0226
The increase in the global warming potential and increase in the pollution rate; people tend to adopt an alternative for the internal combustion engine vehicles. And the alternative leans toward electric vehicle technology. The pure electric vehicle technology also has the limitations of lesser energy storing capacity and higher charging time; needs further improvement. The advancements are Fuel Cell Electric Vehicles (FCEV) helps the vehicles to have a higher range and lesser filling time. The efficient thermal management system in FCEV leads higher energy utilization and increased vehicle range. This paper deals with the significance of thermal management energy consumption on the range and effective working of the FCEV System.
Technical Paper

The Study and Deep Insights of Port Injection Turbocharged CNG Engine Development for Trucks and Buses

2021-09-22
2021-26-0214
The intensifying demand of cleaner fuelled vehicles considering current norms of BSIV and upcoming stringent norms of BSVI with low cost solutions has promoted the development of CNG and dual fuel vehicles. CNG vehicle is anticipated to discover its extensive use for environment fortification and effective deployment of energy capitals. Thus, CNG vehicles can be pretty effective in averting environment deterioration. CNG has low carbon to hydrogen ratio, this leads to very low CO2 emissions compared to gasoline and diesel vehicles. CNG engines have the potential of low NOx and particulate emissions. Natural gas vehicle development has been directed on the way to current use of direct injection and port injection with S.I. engines. Generally for low cost development, all OEMs prefer optimization of existing engines. Similarly for this project, a diesel engine was converted to S.I. engine for development of low emission CNG engine.
Technical Paper

Combustion Characteristics, Performance and NOx Emissions of a Heavy-Duty Ethanol-Diesel Direct Injection Engine

2020-09-15
2020-01-2077
Diffusive combustion of direct injected ethanol is investigated in a heavy-duty single cylinder engine for a broad range of operating conditions. Ethanol has a high potential as fossil fuel alternative, as it provides a better carbon footprint and has more sustainable production pathways. The introduction of ethanol as fuel for heavy-duty compression-ignition engines can contribute to decarbonize the transport sector within a short time frame. Given the resistance to autoignition of ethanol, the engine is equipped with two injectors mounted in the same combustion chamber, allowing the simultaneous and independent actuation of the main injection of pure ethanol and a pilot injection of diesel as an ignition source. The influence of the dual-fuel injection strategy on ethanol ignition, combustion characteristics, engine performance and NOx emissions is evaluated by varying the start of injection of both fuels and the ethanol-diesel ratio.
X